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Abstract

‘We consider reinforced random walk, in which the transition prob-
abilities at each step are influenced by the number of crossings of the
edges. For finite graphs we prove a limit theorem for the joint distribu-
tion of the normalized occupation time of the edges and the normalized
cycle numbers (number of times the random walk winds around the
individual cycles of the graph). The limiting distribution is calculated
explicitely.

1 Introduction

Edge-reinforced random walk was introduced in 1987 by Coppersmith and
Diaconis as a simple model of exploring a new city. Imagine a person walking
in a new city. At first all streets are equally unfamiliar and she chooses at
random between them. As time goes on, streets that have been traversed
more often in the past are more familiar and more likely to be traversed.

Let G be a finite connected graph. We consider reinforced random walk
on G defined as follows. Each edge is given a strictly positive real number as
initial weight. In each step the random walker jumps from the current vertex
to an adjacent vertex by traversing an edge with probability proportional
to the weight of that edge. Each time an edge is traversed, its weight is
increased by 1. This process has an infinite memory. It remembers where it
has been, and it prefers to traverse edges that have been traversed often in
the past.

In [Dia88], Diaconis states without proof that the normalized occupation
measure on the edges converges almost surely to a random vector which has
a density with respect to Lebesgue measure on the simplex. The density
is given up to a normalizing constant. For a proof Diaconis refers to an
upcoming paper together with Coppersmith, but this paper seems never
to have been published. In [Dia88], there is a hint concerning the proof



of Diaconis’ statement, namely that it involves “a difficult combinatorics
calculation”. A proof for the special case where the underlying graph is a
triangle has been given by one of the authors [Kea90].

In this paper we extend Diaconis’ statement: We study the joint asymp-
totic behaviour of (e, B,) where oy, denotes the proportion of time spent on
the individual edges and 53, denotes the normalized cycle numbers (the num-
ber of times the individual cycles of the graph are traversed where traversals
of the same cycle in different directions are counted with different signs).
We show that the distributions under consideration converge weakly to an
absolutely continuous distribution. The density of the limit is calculated
explicitely. As a corollary we obtain Diaconis’ statement and we give the
normalizing constant of his density.

The exposition is organized as follows: In Section 2 we introduce some
basic notation and state the result. Section 3 gives an important property of
a reinforced random walk on a finite graph: it is a mixture of Markov chains.
In Section 4, a counting problem is solved that allows us to calculate the
limiting distributions. Section 5 contains the asymptotics, and in Section 6
the main result is proved.

2 Result

Let G = (V,E) be a finite connected graph with vertex set V' and edge
set F. We denote the cardinalities of V' and F with [ and m, respectively.
We assume that G has no loops, i.e. each edge has two distinct endpoints.
Parallel edges are allowed, so two edges may have the same pair of endpoints.
For an edge e we denote the set of its endpoints by &. The edges are given
positive weights. At time 0 the weights are non-random; edge e has weight
ae > 0. We denote by wy(e) the weight of edge e at time m (just after the
n** step) and by wy, (v) the sum of the weights of the edges incident to vertex
v. Let vg € V.

We define reinforced random walk with starting point vy to be a sequence
Xo,Y1,X1,Y2, Xo, ... with X taking values in V, Y; taking values in E and
Y; = {X;-1,X;} for all i € N = {1,2,...}. Furthermore P(Xy = vo) =1
and

wn(e) ip —
P(Yni1 =€, Xpnt1 =0|X0, Y1, X1, .., Yn, Xn) = ¢ wa(Xy) ife={Xnv}
0 otherwise,



and the weights satisfy wg(e) = ae,

_ ’U.)n(€) +1 if Yn+1 =€
wnt1(e) = { wy(e) otherwise.

We denote by ky(e) the number of times the reinforced random walk
traverses the edge e up to time n:

kn(e) :={t € {1,... ,n}: Y; =e}|

Here and in the following, |.S| denotes the cardinaliy of a set S. We denote by
an(e) == E"—n@ the proportion of crossings of edge e up to time n. We write
kpn and o for the m-dimensional vectors (k,(e); e € E) and (an(e);e € E).
Clearly, all coordinates of a, are nonnegative, and they sum to 1. So aj,
takes values in the (m — 1)-dimensional simplex

A= {mz (ze;e € E) € [O,l]E:Z:Ee=1}.

ecFE

We denote by ay := 3 ..,cq) g the sum of the initial weights of the edges
incident to vertex v, and we set Ty 1= } ..z} Te for any z € A.

Let ¢1,...,¢m—i+1 be a fundamental system of cycles of G, and let the
cycles be oriented in an arbitrary way. (For definition see Section 4, Defini-
tion 4.) We define for z € A an (m —1+1) x (m — [+ 1)-dimensional matrix
A(2) = (ai(a)) by

L 1 L
HOEDS o aij(z)= +— for i # j,

e€c; "¢ e€cinegg ¢

where the signs in the last sum are chosen to be +1 or —1 depending on
whether the edge e has in ¢; and ¢; the same orientation or not.

Cycle numbers are (m — ! + 1)-dimensional vectors counting how often
the walker traverses the fundamental cycles of the graph, where traversals
of the same cycle in different directions are counted with different signs. We
denote by j, the cycle numbers at time n, and we set 8, = % Furthermore,

we denote by I'(a) the value of the Gamma function at a, and we set

I(%e) I1 T(ey)
veV\{vo}

II I'(ae)

eeR

C =



Theorem 1 The sequence {an;n € N} converges almost surely. The distri-
bution of the limit is absolutely continuous with respect to surface measure
on A with density given by

Ge—3
21-——l+zeeEae 1_-[ Ze
¢(w)=0(m e ,,_UQCGEH —V/det(A(z)).
—_— T 3:1)2 xu2
" veVifoo)

Furthermore, the sequence {(an,Bn);n € N} converges weakly. The limit
is absolutely continuous with respect to the product of surface measure on A
and Lebesgue measure on R™'+1 with density given by

3
ae—3%
1—-m-—1 H me 2
2'2—+Ee€Eae E 1
p(z,y) =C (m—1)ln3 e a2 1] seexp (—‘iytA(x)y)-
m T gyl Ty 2 TET ecE(T)
ve€V\{vo}

3 Reinforced random walk as a mixture of Markov
chains

For technical reasons, we choose in an arbitrary manner for each edge an
orientation that we call positive. If e is an edge with € = {u,v}, we call
one endpoint (say v) positive and the other endpoint negative. We say
the arc induced by e with starting point u and endpoint v is positively
oriented and we denote this arc by e or e(u,v). Similarly we call the other
arc induced by e negatively oriented and denote it by e~ or e(v,u). We
denote by kn(e™) respectively k,(e”) the number of times the reinforced
random walk traverses the arc e™ respectively e~ up to time n, and we set
ki = (ka(e*)se € B), kg = (kale7);e € E).

Proposition 1 The reinforced random walk traverses almost surely every
edge infinitely often in both directions.

Proof. Let e be an edge with € = {u,v} and e” = e(v,u). We denote the
time of the it* visit to vertex v by 7; with the convention 7; = oo if v is
visited at most 7 — 1 times. Clearly,

P(v is visited infinitely often, e™ is traversed at most finitely often)

= lim lim P ﬂ {7 < 00, X741 # u}

i9—00 =00
0 i0<i<]



Since between two successive visits to v the sum of the weights of the edges
incident to v increases by 2, wr, (v) < ay + 2i. Therefore given the past
up to time 7;, the probability of not traversing e~ at time 7; + 1 equals

wr.(e) . .
- S -t < exp(— %), so by induction

P ﬂ {'Ti <00, X741 #* u} < H exp (__‘ Qe )

io<i<I io<i<I

Taking limits I — oo and then ig — oo in the last inequality shows
that P(v is visited infinitely often, e™ is traversed at most finitely often) =
0. Using induction we conclude P(v is visited infinitely often, an arc is
traversed only finitely often) = 0. Since the graph is finite, at least one
vertex is visited infinitely often. Thus P(an arc is traversed at most finitely
often) = 0. O

We call a sequence p := (ug,e1,u1,€2,... ,€n,Uy) Withn > 1, u; € V,
ei € E and & = {uj—1,u;} for all 1 € {1,... ,n} a path of length n with
starting point ug and endpoint u,. Observe that an edge can occur more
than once in a path. Let kS (p), k. (p) denote the number of transitions of
the arcs eT, e” in the path p, i.e. kF = |{z € {1,...n} : (ui_1,u;) = et}
If it is clear which path we consider, we write briefly £} and k. We set
kT = (k};e € E), k™ := (k;;e € E). Clearly, k. := k + kJ equals the
number of transitions of the edge e. We call p a (k™, k™)-path or a k-path.

Definition 1 A stochastic process with finite state space I is called partially
exchangeable if all (k*, k™)-paths with the same starting point have the same
probability. Here a path is understood with respect to the graph with vertez
set I and edge set I x I.

Clearly, every Markov chain is partially exchangeable.

Let I be a finite set. Consider the set P of stochastic matrices on I x I
with the topology of coordinate convergence. The set I X P is compact. We
denote the coordinates of p € P by p(i,7). A stochastic process {Z,} with
state space I is called a mizture of Markov chains if for each i € I there
exists a probability measure u(7,-) on the Borel sets of P such that

n—1

P(Z; =i; for j=0,... ,n) = / TT 2G5 i5+1)1ios dp)-
p =0



Theorem 2 (Diaconis and Freedman [DF80], p.117, theorem (7))
Let {Zn;n € No} be a stochastic process with finite state space. Suppose
P(Z, = Zy for infinitely many n) = 1. If Z is partially ezchangeable, then
Z 1is a mizture of Markov chains.

Let p = (ug,e1,u1,€2,... ,€n,uUyn) be apath, and let v € V. We denote by
ny(p) the number of departures from v and by i, (p) the number of arrivals
to v in the path p. Formally, we set

ny={i€e{0,l... ,n—1}:u; =0}, A,=[{te{l...,n}:u; =0}

Clearly, the number of departures and arrivals is determined by ¥ and k~,
and

ot = Y ke 2)

{ewee}

If we denote by vy the starting point of the path and by v its endpoint,
then

Ty + 0y, (V) = iy + 0y, (v), ()

where §,(v) takes the values 0 or 1 depending on whether u # v or u = v.
From (2) and (3) we conclude

1

ny = 5 | G (0) = G, (v) + > ke (4)
{e:vee)}
and
1
=5 | b, () — 6y (V) + { 2;} Ee | . (5)

We see from the last equation that (ke mod 2;e € FE) together with the
starting point vy determines uniquely the endpoint of a k-path: If Y {ewez) ke
is even for all vertices, then the endpoint equals the starting point. If there
exists a vertex vy # vy such that Z{eweé} ke is even for v € V \ {vg,v1}
and odd for v € {vg,v1}, then the endpoint equals v;. In all other cases, no
k-path is possible.

Lemma 1 A k-path with starting point vy and endpoint vy ezists iff



1. vg=v; and Z{e:veé} ke is even for allv €V, or

2. vy # vy, Z{e:'veé} ke is even for allv € V' \ {vg,v1} and odd for v €
{‘00,1)1}.

In particular (ke mod 2;e € E) together with the starting point vy determines
the endpoint of the path uniquely. Furthermore the number of departures and
arrivals are given by (4) and (5).

Proof. It remains to show that the given conditions are sufficient for the
existence of a k-path with starting point vg and endpoint v;. This will be
Lemma 5. O

Lemma 2 Two k-paths of reinforced random walk with the same starting
point have the same probability. In particular, reinforced random walk is
partially exchangeable (with respect to the state space E x V).

Proof. We compute the probability of a fixed k-path of length n with
starting point vg. This probability is given by a product with n factors,
one for each transition. The first time the reinforced random walk visits
a vertex v different from the starting point, the sumn of the weights of the
edges incident to v equals a,, + 1. From this observation it follows easily that
the probability under consideration is given by

ke—1
I 1T (ac+
g 1 ny—1 ) (6)
1T (aw, +2¢) TI IT (@y + 1+ 23)
1=0 veV\{vo} =0

Since the number of crossings k£ and the starting point vy determine the
endpoint of a k-path uniquely, we see from (4) that this probability depends
only on k and vg. O
We denote by A the boundary of A:
OA = {(z¢;€ € E) : z. = 0 for some e € E}

+ _ kb~ ks
Set o = -, o = 2.

Lemma 3 The sequences {a;;n € N}, {e;,;n € N} converge almost surely.
The limits o}, ay, satisfy

P(al,(e) =0 for some e € E) = P(ag(e) =0 for some e € E) =0.
In particular, P(ay € 0A) = 0.



Proof. Reinforced random walk with starting point vy is a stochastic
process Zy = X, Zp = (Xn, Yn), n € N with state space I := {vg} UV x E.
We have to add {ug} because the starting value plays a special role. We
denote by @, the distribution of a Markov chain with state space I and
transition matrix p. Reinforced random walk is partially exchangeable, so
by Theorem 2 there exists a probability measure x on the set P of stochastic
matrices on I such that the distribution P of reinforced random walk with
starting point vg satisfies

PO = [ QplIntan). )
P

Since for every Markov chain {o;n € N}, {a;;n € N} converge almost
surely, we conclude from (7) that the same is true for the reinforced random
walk.

We denote by P’ C P the set of all irreducible stochastic matrices. For
p ¢ P', there exist i,j € I such that p}'; = 0 for all n € N, ie. if the
corresponding Markov chain reaches state ¢ at some time ng, then it will
not reach j after time ng. Observe that each element of V' x E corresponds
uniquely to an arc in the graph G. Suppose i and j correspond to the arcs
e and f* respectively. Then Qp(k, (e) > 0,limy, o0 k7 (f) = +00) =0, so
by (7)

P(lim kf(e) = lim k; (e) = +oo for all e € E)
n—o0

n—00

_ ' . T -\ ) /
= / QP(HIL%O kl(e) = nli)Holo k, (e) = +oo for all e € E)u(dp) < u(P').
'Pl’

Since reinforced random walk traverses almost surely each arc infinitely of-
ten, P(limy, 00 k7 (€) = limp ook, (€) = oo foralle € E) = 1, and we
conclude u(P’) = 1. Hence p is concentrated on the set of irreducible
stochastic matrices. For an irreducible Markov chain with finite state space,
all states are positive recurrent, so for all p € P’ Qp(ad,(e) = 0 for some e €
E) =0, and the lemma follows from another application of (7). O

4 The number of k-paths

For the proof of Theorem 1, we compute explicitely P(a, = %), the proba-
bility of all k-paths, and P(ay, = %, Brn = —-\/.Lﬁ), the probability of all k-paths
with cycle number j. Using Lemma 2, we know that the first probabil-
ity equals the probability of a fixed k-path multiplied by the number of



k-paths. It will turn out that there is a one-to-one correspondence between
(k,7) and (k*,k™), so the second probability equals the probability of a
fixed (k*,k™)-path multiplied by the number of (k*,k™)-paths. We have
already computed the probability of a fixed k-path, so it remains to find the
number of k-paths and (k™, k™ )-paths. Throughout we denote the starting
point by vy and the endpoint by v;.

We call a path with the same starting and endpoint that contains no
edge more than once a closed path. The collection of vertices and edges con-
stituting a closed path considered as a circular sequence, i.e. as a sequence
defined relative to circular order is called a circuit or an oriented cycle. A
circuit has no distinguished starting point, and this is the only difference
between a closed path and a circuit. If we reverse the order of the vertices
and edges constituting a circuit, we obtain a different circuit. If we disre-
gard the orientation of a circuit, we call the collection of vertices and edges
constituting the circuit a cycle.

A cycle graph is a graph with the property that its vertex set together
with its edge set constitute a cycle. A ¢ree is a connected graph that contains
no cycle graph. A spanning tree of the graph G is a maximal tree contained
in G, i.e. a subtree of G that is not contained in any larger subtree. It is
easy to see that a subtree of G is a spanning tree iff it has |[V| — 1 edges.

For a vertex v in a directed graph, we call the number of arcs having
v as an endpoint the out-valency of v. A tree converging to v is a directed
tree, in which v has out-valency 0 and all other vertices have out-valency 1.

Given a path p = (ug, €1,u1,€2,... ,€n,Un), we can for each vertexv € V
determine the sequence of edges chosen to leave the vertex, ordered in time.
We call this sequence of edges the ezit order of v. The last edge in the exit
order of v is called the ezit edge of v. Analogously, we can define the ezt
arc of v.

Lemma 4 Given a k-path that traverses each edge at least once, the set of
exit arcs from all vertices except the endpoint form o spanning tree converg-
ing to the endpoint of the path.

Proof. The set of exit edges contains |V|—1 elements: If not, the exit edges
of two different vertices agree. But then the last departure from one vertex
yields to a vertex from which a last departure has already been performed,
so this vertex must be the designated endpoint, contradicting the fact that
we didn’t consider the exit edge of the endpoint.

Suppose the set of exit edges contains a cycle. Consider the edges in the
order they have been traversed. The edge that closes the cycle originates



from a departure towards a vertex from which the last departure has already
been performed. This is a contradiction by the same argument as before.
So we have shown that the set of exit edges under consideration forms a
spanning tree. Clearly, the exit arcs are directed towards the endpoint.O

We are now able to give a scheme to construct all (k*, k™ )-paths. The
method we use basically amounts to counting Euler circuits in directed
graphs with parallel edges. This idea goes back to van Aardenne-Ehrenfest
and de Bruijn ([vd51] section 6). See also [Kas67], section IV, C. For a
description in terms of urns see [Zam&84].

Lemma 5 Let k}, k;, e € E, be non-negative integers such that ke :=
k; + kI are strictly positive and condition 1 or 2 of Lemma 1 is satisfied.
Then n, and 7, defined by (4) and (5) are strictly positive integers and
all (k™,k™)-paths starting at vo can be constructed in the following way:
Construct an ezit order of length n, for every vertexr v by first choosing, for
each vertex different from vy, the exit edge in such e way that all exit arcs
form a spanning tree converging to vi. Then choose all the remaining edges
in an arbitrary order, and construct a path as follows: The path starts at v,
traverses the first edge in the exit order of vg, goes to the indicated vertez,
traverses the first edge in the exit order of this vertez etc.

Proof. Given a (k™,k™)-path, we can determine for each vertex the exit
order, and by Lemma 4 the exit arcs chosen from the vertices except the
endpoint give a spanning tree converging to the endpoint. Conversely, if we
are given an exit order for each vertex, we can start to construct a path
as indicated above. Eventually, one arrives at a vertex where there are no
more departures left. From (4) and (5) we conclude that (3) holds, and from
(3) it follows that the vertex where there are no departures left must be the
endpoint vy, and there cannot be any arrival to v; left. Let v be adjacent to
v1 and suppose that v and v; are connected by an edge in the spanning tree
induced by the designated last departures. Since there are no arrivals to vy
left and the last departure from v must be performed on the spanning tree
towards v;, there cannot be any departure from v left. By (3), there cannot
be any arrivals to v left. Since any vertex can be reached from v; via a finite
path on the spanning tree, we conclude by induction that there cannot be
any crossings left. So the construction yields indeed a (k*,k™)-path. D

It is now easy to write down a formula for the number of (k™,k7)-
paths.We denote by 7 the set of all spanning trees of G.

10



Lemma 6 The number of (k*,k™)-paths with starting point vg s given by

Mn! > TI k&
vEV TETGEE(T)
I kc1k! I =’
ecE veV\{v1}

where HeeE(T) k¥ is a product over all edges in the tree T, and k or kI
is chosen depending on whether the edge e~ or et is directed toward the
endpoint vy, and n, is defined by (4).

Proof. This follows easily from Lemma 5. O

Now we want to find out how to determine the number of k-paths from
the number of (k*, k™ )-paths. First we recall definitions and results from
graph theory. For a more detailed exposition we refer to [Big93] and [Bol98].
We enumerate the vertices and edges in an arbitrary way, V = {v1,... ,u},
E = {e1,... ,en}. Recall that we have chosen an (arbitrary) orientation for
each edge, and for e™ = e(u,v) we call u the negative and v the positive end
of the edge e.

Definition 2 The incidence matrix D = (d;;) of the graph G is the (I x m)-
matriz defined by

+1, ifv; is the positive end of e;
di; = < —1, ifv; is the negative end of e;
0, otherwise.

For a (k*,k™)-path we call k™ —k~ the transition vector of the path. The
transition vector of a cycle is an m-dimensional column vector ¢ satisfying
c(z) = 1 if e belongs to the cycle, c(i) = —1 if e;” belongs to the cycle
and c¢(i) = 0 otherwise. It is easy to see that D¢ = 0. This motivates the
following definition.

Definition 3 The cycle space of the graph is the set of all column vectors
c € Z™ with Dc=0.

Fact 1 The cycle space is an (m — [ + 1)-dimensional vector space.

Fact 2 Let T be a spanning tree of the graph G. For each edge e of the
graph not belonging to T there exists a unique cycle c. that contains e and
edges from T only. The transition vectors ce of these m — 1 + 1 cycles form
a basis of the cycle space.

11



For a proof of these Facts, we refer to [Big93], sections 4 and 5.

Definition 4 The collection of cycles induced by a spanning tree as stated
wn Fact 2 is called a fundamental system of cycles of the graph G.

We call a path (ug,e1,us,...,en,un) without cycles that contains no
edge more than once, a simple path from ug to u,. A loop is a path
(uo, e1,ur,e2,us) with ug = ug and e; = ey. Clearly, the transition vec-
tor of a loop equals 0.

A (k*,k7)-path p from vy to v; can be decomposed in cycles, loops
and a simple path from vy to v;. Clearly, the transition vector k¥ — k&~
of the path equals the sum of the transition vectors of the cycles, loops
and the simple path. Denote the transition vector of the simple path by
s. Let {e1,... ,em-i1+1} be a basis of the cycle space. Then the sum of the
transition vectors of the cycles can be written in exactely one way as a linear
combination of this basis, so we get

m—Il+1

> Gici+s (8)
i=1

with integers j;. Suppose we decompose the path p in a different way in
cycles, loops and a simple path from vy to v1, so that we get a representation
Et — k™ = Y jle; + 8. Then s’ = s+ (s' — s) and s’ — 5 is the
transition vector of paths with the same starting and endpoint, which can
be decomposed in cycles and loops, and we get kT — &k~ = 77 e + 5.
Since {c;} is a basis of the cycle space, j; = j;' for all 4, and we have shown

the following lemma.

Lemma 7 Let{ci,... ,Cm—n+1} be a basis of the cycle space, and let s be the
transition vector of a simple path from vg to vi. Given k™ und k™ such that
a (kT,k™)-path from vy and vy is possible there ezist uniquely determined
integers j1,... , jm—i+1 Such that (8) holds.

Definition 5 The uniquely determined integers j := (j1,--. , jm—1+1) from
Lemma 7 are called the cycle numbers of the (k*,k™)-path (relative to the
basis {c1,... ,Cm—n+1})-

From (8) and k£ = k% + k™, we conclude

m—Il+1 1 m—Il+1
<k+s+ by m) and k™ =-2—(k—s— > ]zcz) (9)

g=1 =1

k+

t\)l)—l

12



Given k, we want to determine all possible decompositions k = k* +k~ such
that a (k*,k™)-path exists. Let s be the transition vector of a simple path
from vg to vy, and let j1,... ,Jm—1+1 be integers such that all components
of k™ and &~ defined by (9) are non-negative integers. We claim that there
exists a (k*, k™ )-path. To show this we first verify (3) for the number of
departures and arrivals induced by k1, k. Each cycle contributes the same
number of arrivals and departures to a vertex, so the same is true for any
path with transition vector Y ;- s jici. The simple path contributes an
additional departure to vg, and an additional arrival to vy. So (3) is satisfied.
Together with (4) and (5) it follows that the assumptions of Lemma 5 are
satisfied, and we have shown that a (KT, k™ )-path exists.

It remains to determine conditions on the cycle numbers j that are nec-
essary and suffcient for k¥ and k™~ defined by (9) to have non-negative
integer-valued components. Let {¢j,... ,¢m—1+1} be a basis of the cycle
space induced by a spanning tree as described in Fact 2. There exists for
each ¢; exactely one edge ¢, in the corresponding cycle that does not belong
to the spanning tree.

Lemma 8 Given k and a simple path s from vy to vy, let k* and k= be
defined by (9). There ezist (k™ ,k™)-paths from vg to vy iff the cycle numbers
j satisfy the following conditions:

1. ji=ky,+s; mod2 fori=1,..m~-1+1.

2. s+ XY i+l jici| < k where the absolute value is taken component-
wise, and the inequality is also component-wise.

Proof. Since n = —n mod 2 for any integer n, a necessary condition for
(kT,k7) to have integer-valued components is k = s+ > o] 1 j.¢; mod 2,
where the equivalence is componentwise. Since ¢; is the only cycle with a
non-zero lﬁh component, the I}* equation is ki, = s, + j; mod 2, so the first
condition is necessary Since there exists a k-path, we know that for some
integers j!, ji = ki, + s;; mod 2. From this equality it follows j; = j; mod 2,
and we conchlde k=s+ YT jle; = s+ Y77 jic; mod 2. Hence the
first condition is sufficient.

Clearly, the second condition is necessary and sufficient for 7 and £k~
to have non-negative components. O

Definition 6 Integers j satisfying the conditions from Lemma 8 are called
possible cycle numbers (relative to the basis {c1,... ,Cm-n+1})-

13



5 Asymptotics

We recall Stirling’s formula and the corresponding asymptotic formula for
the Gamma function.
Lemma 9 1. ForneN, nl= San e with 0 < 6(n) < 1.

1

2. For real-valued > 0, I'(z) = \/27T$z—56—$+21%2 with 0 < 6(z) < 1.

For a proof we refer to [Art64], p.24 formulas (3.9).

Let {¢i1,... ,cm-1+1} be a basis of the cycle space induced by a spanning
tree as described in Fact 2. Let j, = (jn(1),... ,jn(m — 1 + 1)) denote
the cycle numbers at time n. We set 8, = (]i\/%), ey ji(i—”\/"—;l—ﬁ),and write

briefly ,Bn;"%- For ¢ > 0 and n € N, we set
A = {zeA:z.>ecforalle€ E},

k
Al = {.’EEAE:zez—ngwithkeeNg fora,lleeE}.

Furthermore, we set
m~—I+1
9() =5+ Y dic
=1

Fix v €]}, [, and set

I = {;j——;—i : 7 is a possible cycle number}
g

= {

Qi; = Jn\\Qn-

By Lemma 1, (k. mod 2;e € E) together with the starting point vg deter-
mines the endpoint v; uniquely. Lemma 8 gives the possible cycle numbers
for k-paths. We denote by A? x Qn(v1) the subset of A7 X Qy consisting
of all pairs (%, ~=) such that a k-path with endpoint v; and cycle number

l

S

€ Jn:lge(§) <n¥ foralle€ E}

j is possible. We write d := m—‘éﬂ for the dimension of the cycle space
multiplied by %
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Lemma 10 1. Let ¥(v,z,y) = 2™ lz,0(z,y). For all v; € V and for
all € > 0,

nm+d—1

lim Sllp '_""_—.Pa —'——xle =y —wv,x,y‘:o’
00 (g y)EAT XQn (v1) (m —1)! (n n ) (01 )

2. For all € > 0 there exists a constant C, > 0 such that

1
sup  w™1P(an = 5. B = y) < Gy exp (—-<en>2”f~2) .
(@y)EARX QL 2

Proof. First we compute the asymptotic behaviour of the probability p
of a fixed k-path given by (6). We use

k—1 5
H(a+z)= ~ k*t2 3¢ as k — o0
Fainy I'(a)  T(a)
for the enumerator, and
n—1
I--‘(Q + n) AV 271' a—1
(a+2i) =20 —2 ~ 2" 3 e as n — 00
11 g I

for the denominator, to obtain

ac—3 k
I1 ke I1 kee

m=1 E eElR
~ (2 C e< 10
= = T G (0
Myg Ty eV
veV\{vo}

with C given by (1) as k. — oo for all e € E. The convergence is uniform
in k for % € A. because in this case k. > ne.

Next we compute for z = % the asymptotic behaviour of P(ay, = z,fn =
0), the probability of all k-paths with cycle numbers equal to zero. If all
cycle numbers equal zero, then by (9), k¥* = &2, In particular, kZ differs
from ’—‘22 in absolute value by at most % Lemma 6 gives the corresponding
number of (k*,k™)-paths, so we get

11 no! > H&Qj”:i

_ . . VeV TeT ecE(T)
P(an =, 0n = 0) =p H kgg-s!kgfz—s! H Ty
e€E vEV\{n }

15



Using Stirling’s formula and (10) we obtain

1
1 H ngﬁ-g Z H ke

(27)2 _, vev TET ec E(T)
P = - ~ ) ™
( x»ﬁn 0) I’ ﬂ_m Hk§e+1 H 2’":1;
ecE veV\{v1}
3
n I k2 Y I ke
- C _2_ 2 ecE TeT ecE(T)
7)) EE T am I e
* veV\{vo} ’ veVi{u}

where again the convergence is uniform in k for % € A.. With %’L = g, and

2—21 = z,, We obtain
3
ae—§
1 T T
lesmyy  23(Mim14) ey a0) " elE—[E )
Plap=2,0p=0)~n 2 C = g - IZ H Ze-
4 Tyl [T zv? TeTecE(T)
veV\{vo}

It remains to compute for y = A\/—?—ﬂ the asymptotic behaviour of

ketge
2
P(an = "EMBTL = y H kelke' TET ecE(T) (11)
Plap =2z,8,=0) E____Lﬂce el ] lcﬁzis‘

TET ec E(T)

By Stirling’s formula,

ke ke ke g -t ge\ 2
o k2+ e 2(1_—£> (1+—e) (12)
—55-93!%2-95! kz — gz ke ke

and the convergence is uniform in k and j for (%, —\/%) € A¢ X Q,, because in
this case k. £ ge > ke —n”7 > en—n"Y and v < 1. To compute the asymptotic
behaviour of the last term, we take logarithms and use Taylor’s formula

2 3

z .
log(l+z)=z— _Q—+ 36(27 with |0(z) — 1| < z for |z| < 1,

16



to obtain

ez _L"L‘Q’:ﬂ&
Ge _ Ge
( ke) B (1+ke>
ke — ge Ge ke + ge Ge
= -1 1-=) - ——1 14+ =
exp[ 2 og( k. 2 og —1~k“2

= exp [——-éqig‘?— + 7(ge, ke )]

(k—9)g° (k+g9)g°
with r(g,k) = 6530 (— )— 6R36(%)

For (ﬁ, \/—) € A¢ X Qp we have l%:'—l < % < % for n sufficiently large, so
3 < 6(£4) < 3 and consequently,

2372 . on37-2
exp (-2 ) < eprib) < em (B ).

Thus exp(r(j, k)) — 1 uniformly on A, x @Qn, and we conclude

Plag = 2,60 = y) g\ _ ge
Play, = z,B, =0) H P 2k, ) <P ez 2nze |

ecE

Let dlag(—— e € E) denote the | E|-dimensional diagonal matrix with entries

;;, andset N = (c,..- ,Cm-141)%, 80 N is an (m — I+ 1) X m-matrix. Then
2 t
e g . 1 g
=“—diag| —;e € F | ==.
Zing, Voo (a: ) NG

Observe that —% = % + Z?___l lﬁcz = _\% + Nty and
Ndiag (—1— e€ E) Nt = A(x),

where a;;(z) = D .., 51: and 0;(2) = Y ecene; +-L for i # j and the
signs in the last sum are chosen to be +1 or —1 d1epend1ng on whether the
edge e has in ¢; and ¢; the same orientation or not. It follows ) g 55; =
v A(z)y + O(ﬁ), and we conclude

P(an-—-a:,ﬁn:y) 1
Plag =z B =0) ~ P (—53154(:6)1/) :
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Putting everything together, the first part of Lemma 10 follows.
For the proof of the second part of Lemma 10, we observe that the error

6(n) , C . . . 8(n) L
term e12» in Stirling’s formula is uniformly bounded: 1 <eTn < e7s. Thus
using the same argument as before, we get

n™t P (o, = 2, B = 0) < constp(z,0).
It remains to analyze (11). Clearly,

ke 1 ke
Plan=z,fn=y) _ I PRV
P(an = x’IBn = 0) - ol ke;ﬂe!ke;ge!

Clearly, the factors are decreasing in g and < 1. For (£, —\/-1;—1) € A x @y,
there exists an e € F with |ge(7)| > n7, so

ke k
Plap =z,Bn =) 35!
Plap=1z,8,=0) ~ Lc’":ﬁﬂl!ki#-!

1 n?7~1 2n37-2
< const——?_——m—_—; exp (—-2’;—) exp (*3?—> )

€

and the second part of Lemma 10 follows. O

6 Proof of Theorem 1

First we prove the weak convergence of {(an,fBn)}. Let € > 0, and let
f: A x R? — R be bounded and continuous. We set for M > 0,

Qn,M={ﬁEJn:]ji|§M\/7_LforalliE{1,.‘.,m—l+1}}.

For all M > 0 we get

E[f(anaﬁn)] = E[f(amﬁn)’ﬁn S Qn,M] + E[f(an,ﬁn);ﬂn € Qn \ Qn,M]
E(f (s n); B € Q) 13)

The first term in (13) equals

D" Elf(an, Bn); (@n, Bn) € A? X Qn (1))

M eV
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Using the first part of Lemma 10 and the fact that the number of points in
A X Qn p(v1) is of the order n™~17¢, we see that the last expressions has
the same asymptotic behaviour as

Z%—‘%‘ > fewplnay).

nev (2,9)EAZ XQn, m(v1)

This is a finite sum of Riemannian sums. Taking into account that the
individual cycle numbers are either odd or even (condition 1 from Lemma

8) gives a factor 2724, There are roughly “E;}f %";_l points in A” and
points of the order n? in @y pr(v1). The restrictions mod 2 on the number
of crossings of the edges gives a factor 2~ ("~ (m—1+1) = 911 Using this we

see that taking the limit n — oo and then M — oo yields

> g:g—in)‘i: / / f(z,y)¢(v1, z, y)dyo(dz)

nev A R2d

= I“Fm 1//f1:y)z¢vl,$ y)dyo(dz).

AE de V1 EV

Here we denote by ¢ normalized Lebesgue measure on A.
Observe that part 1 of Lemma 10 implies

n"™ P = 2, B = ) < (o1, 7,9)

for all (z,y) € AP x Qn(v1) and all n sufficiently large. Using this, the
integrability of ¥ on A, x R?¢ and the fact that A, x {y € R%? : |y;| >
M for somei € {1,...,m —1+1}} | 0 as M — oo, we can argue in a
similar way as above that the second term in (13) tends to zero if we take
the limit n — oo and then M — co.

Using the last part of Lemma 10 and the fact that the number of points
in A" x @, is at most of the order n™~1%2¢ it follows easily that the last
term in (13) tends to zero as n — co. So we have shown

n—roo

lim E[f(an,Bn)] = ( _e)m //f (z,9) Y ¥(v1,7,y)dyo(dz)

Ac R2 vev
= (- / / f(@,y)ple, y)dyo(dz).
Ae R2d

Here we have used ) ¢(v,,y) = 2™¢(2,Y) D ey Tv and ) oy Ty = 2.
vEV
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To prove weak convergence of { (@, Br)}, let h : AxR?? — R be bounded
and continuous. For all € > 0,

E[h(an:ﬁn)] = Elh(an, Bn);om € A+ Elh(an, Bn);on € A \ Ae]~ (14)

For h > 0, we have by the above argument and by the monotone convergence
theorem,

e—+0n—o0

lim lim Efh(an,Bn);a, € A = hr%(l —e)™ 1//h(z y)p(z,y)dyo(dz)
Ae R2d

//h z,y)p(z, y)dyo(dz).

A R2d

Since 0 < E[h(an, Bn)] < ||hlloo, the last integral is finite. So for general h
we get the same decomposing h in its positive and negative part.

The second term in (14) is dominated by a constant times the probability
P(ay, € A\ A,), and

lim lim Pay, € A\ A = hmP(aoo € A\ A) = Plax € 0A) =0,

e—~0 n—oo

so this term converges to zero as n — oo and € — 0, and we have shown the
weak convergence.

Almost sure convergence of {an;n € N} follows form Lemma 3 and the
identity e, = @;F + ;. To compute ¢(z), we have to integrate ¢(z,y) with
respect to y. The only factor that depends on y is the exponential term,
and

-

/ exp(~ 5yt A(a)y)dy = (2n)"[det A(2)]%.
R2d

Now the crucial step is to apply the following matrix-tree-theorem.

Theorem 3 ([Mau76], p. 145, theorem 3’)

detA(z Z H

TET eg B( T)

This equation can be rewritten as

[T =z

TET ecE(T)

IT ze ’

ecE

detA(z) =

and putting everything together, it follows that ¢ has the form indicated in
Theorem 1. O
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